亚洲无人区乱码中文字幕,国产精品永久久久久久久久久,免费B站在线观看人数在哪儿找,阿娇手扒性器全部图片

聯系我們 | 更多分站 您好,歡迎訪問ptfe濾袋|pps濾袋|ptfe針刺氈|除塵濾袋廠家|氟美斯針刺氈|覆膜pps+ptfe布袋|「奧飛掿環保」站網站!
微信在線客服
聯系我們Contact us
全國咨詢熱線19962393205

ptfe濾袋|pps濾袋|ptfe針刺氈|除塵濾袋廠家|氟美斯針刺氈|覆膜pps+ptfe布袋|「奧飛掿環保」站

公司地址:江蘇省鹽城市經濟開發區

聯系電話:19962393205

公司郵箱:19962393205@163.com

您的位置:首頁>>新聞中心>>常見問題
常見問題

焦爐除塵器改造的作用 關于除塵器的介紹

作者:147小編 發布時間:2023-08-25 00:19:50點擊:525

信息摘要:

?

很多朋友對于焦爐除塵器改造的作用和關于除塵器的介紹不太懂,今天就由小編來為大家分享,希望可以幫助到大家,下面一起來看看吧!

冰膨脹做功能量的轉化

為推動節能技術進步,提高能源利用效率,促進節約能源和優化用能結構,建設資源節約型、環境友好型社會,我們組織有關單位和專家,在廣泛征求社會各界意見的基礎上,重新修訂《中國節能技術政策大綱》(以下簡稱《大綱》)。

1總論

1.1節能工作方針和原則

節能是一項長期的戰略任務,也是當前的緊迫任務。節能工作要全面貫徹科學發展觀,落實節約資源基本國策,以提高能源利用效率為核心,以轉變經濟增長方式、調整經濟結構、加快技術進步為根本,強化全社會的節能意識,建立嚴格的管理制度,實行有效的激勵政策,逐步形成具有中國特色的節能長效機制和管理體制。

堅持開發與節約并舉,節約優先的方針,通過調整產業結構、產品結構和能源消費結構,用高新技術和適用技術改造提升傳統產業,促進產業結構優化升級,淘汰落后技術和設備,提高產業的整體技術裝備水平和能源利用效率。

堅持節能與發展相互促進,把節能作為轉變經濟增長方式的主攻方向,從根本上改變高耗能、高污染的粗放型經濟增長方式;堅持發揮市場機制作用與宏觀調控相結合,努力營造有利于節能的體制環境、政策環境和市場環境;堅持源頭控制與存量挖潛、依法管理與政策激勵、突出重點與全面推進相結合。

1.2制定《大綱》的目的和意義

《大綱》所稱節能技術是指:提高能源開發利用效率和效益、減少對環境影響、遏制能源資源浪費的技術。應包括能源資源優化開發利用技術,單項節能改造技術與節能技術的系統集成,節能型的生產工藝、高能用能設備、可直接或間接減少能源消耗的新材料開發應用技術,以及節約能源、提高用能效率的管理技術等。

《大綱》從實際出發,根據節能技術的成熟程度、成本和節能潛力,采用“研究、開發”,“發展、推廣”,“限制、淘汰、禁止”等措施,規范節能技術政策。《大綱》以2010年前推行的節能技術為主,相應考慮中長期節能技術的研發。

《大綱》用于指導節能技術研究開發、節能項目投資重點方向,為編制能源開發利用規劃和節約能源規劃提供技術支持,為實現“十一五”節能目標奠定基礎。

2工業節能

我國工業能源消費量約占全國能源消費總量的70%。技術與裝備良莠不齊,部分裝備技術能低下,生產工藝落后,導致能耗指標較高,總體用能效率低,嚴重制約國民經濟持續快速發展。

2.1能源資源優化開發利用與合理配置技術

2.1.1發展能源資源優化開發與優化利用技術

制定煤炭、石油、天然氣、煤層氣(煤礦瓦斯)、水電和海上油氣田等大型能源資源總體開發方案并滾動修訂;優化煤、油、氣和水電資源的配置;統籌規劃能源開發、運輸、儲存、加工、轉換、燃料替代等,以達到能源開發利用佳整體效益。

優化和調整用能結構,實現有效利用能源資源。高耗能產業因地制宜地靠近能源產地布局。有條件的礦區統籌發展煤電、煤化工、煤炭建材等綜合利用產業。

擴大煤炭洗選加工比例。供應煉焦用煤必須全部洗選加工。重點發展化肥和高爐噴吹用煤及高硫、高灰份煤的洗選。

2.1.2發展多種能源發電與合理配置技術

依據我國一次能源資源和大用電負荷中心分布特征,發展煤炭坑口大容量電技術與大水電基地發電技術;發展大容量燃氣、蒸汽聯合循環發電和燃氣輪機調峰發電技術,缺水地區發展節水型發電技術;在缺乏能源資源地區,積極發展安全堆型核電技術;發展煤矸石綜合利用電廠。

在熱負荷集中地區,發展熱電聯產,熱、電、冷三聯產發電技術;北方采暖地區大中城市發展集中供熱的熱電聯產,優先建設以熱定電的背壓供熱機組和200MW以上的抽汽供熱機組。

發展高參數、大容量、高效率發電技術。大型電力系統發展超臨界、超超臨界壓力等級發電技術;推廣建設600MW及以上高參數大容量燃煤機組、高效潔凈煤發電機組和大型聯合循環機組,限制在大電網內新建常規300MW及以下中、小型凝汽式機組。重點開發并推廣適合國情的循環流化床及整體煤氣化發電技術,積極發展300MW及以上大型循環流化床鍋爐。優化供電方案,逐步淘汰單機容量100MW及以下常規燃煤純凝汽式小火電機組和單機容量50MW及以下的以發電為主的燃油鍋爐、發電機組。

實施節能電力調度,限制能耗高的機組發電,大限度節約能源。

發展大容量、遠距離、安全經濟輸電技術。

發展500kV超高壓輸電技術。

禁止電力系統新建燃油發電廠。

2.1.3發展水電資源綜合優化開發、利用技術

大力發展流域梯級水電優化開發技術。

大電網重點發展500MW以上大型混流或水輪機發電技術。

靠近負荷中心的地區,重點發展300MW及以上大型抽水蓄能電站技術。

2.1.4發展、推廣煤炭資源高效開采利用技術

發展煤炭大規模、集約化開采技術。發展采掘機械化,推廣綜采、綜掘技術裝備,建設高產高效礦井和大型煤炭生產基地,按品位開采利用,提高回采率。

研發煤炭地下氣化技術,促進報廢礦井殘留煤的回收利用。

鼓勵、支持礦井煤與煤層氣(煤礦瓦斯)共采,研究、推廣新型高效的煤層氣(煤礦瓦斯)抽采技術。加快煤層氣(煤礦瓦斯)資源勘探、開發力度;加速引進、開發煤礦煤層氣(煤礦瓦斯)等可燃氣體回收利用技術和低濃度瓦斯利用技術,降低煤氣放散率。

研發煤化工、煤炭液化替代石油技術。推廣潔凈煤代油,石油焦氣化燃燒技術。

推廣高效、低污染煉焦技術,提高焦炭產出率,回收利用煉焦過程副產煤氣、焦油等。

關停回采率低與不具備安全條件的小煤礦。

保護開采焦煤資源,嚴禁將主焦煤當動力煤使用。

2.1.5鼓勵低熱值礦物燃料綜合利用技術

就地利用熱值12560kJ/kg及以下礦物燃料,10500kJ/kg以上的煤矸石用作低熱值工業鍋爐燃料。

發展、推廣燃燒煤矸石、煤泥等低熱值燃料的循環流化床鍋爐發電技術,充分利用煤矸石、煤泥、中煤、油頁巖、石煤等低熱值燃料。

發展低熱值煤矸石、石煤生產磚瓦,或用作水泥廠燃料和配料、混凝土和建筑砌塊及墻板用骨料等新型節能建材的技術。

2.1.6發展褐煤利用技術

發展褐煤氣化技術,利用褐煤生產甲醇等化工產品。

研發褐煤提干、快速熱解工藝、褐煤直接液化和無粘結劑成型技術。

2.1.7發展、推廣油氣資源綜合開發利用技術

推廣油田伴生氣回收利用技術,如撬裝式輕烴回收裝置、套管氣回收、大罐抽氣和天然氣發動機等技術。整裝油田必須同步建設伴生氣、凝析油回收設施。推廣汽油裝車站臺、加油站和油庫油氣回收技術。

2.1.8研究油頁巖資源開發和綜合利用技術

2.1.9發展資源再生循環利用技術

加強廢舊資源再生利用,擴大加工能力,提高利用效率。發展廢舊鋼鐵、廢舊有色金屬、廢舊塑料、碎玻璃、廢紙、廢舊輪胎、報廢汽車、廢舊電子設備與器件、廢舊家用電器和廢舊電池等再生利用技術。

開發利用工業爐渣、煤矸石、粉煤灰、煙道灰等工業廢渣,生產廢渣磚、內燃磚、砌塊等墻體材料的工藝技術;發展冶煉廢渣、化工廢碴、造紙廢液、粉煤灰、脫硫石膏、制糖廢渣等工業廢料的綜合利用技術,構建循環經濟產業鏈。

發展城市生活垃圾、農林廢棄物、沼氣池廢渣、人畜排泄物等綜合利用技術。

2.2重點生產工藝節能技術

2.2.1煤炭生產節能技術

推廣煤炭開采優化巷道布置技術,簡化系統、減少巖巷。有條件的礦井推廣巷道光面和錨桿、錨索、錨噴支護減少風阻。發展選煤廠閉路循環工藝,實現廢水和煤泥回收利用。在缺水或高寒地區,推廣干法選煤新工藝。

2.2.2電力生產節能技術

發展、推廣火電廠全過程優化運行和狀態監控技術。在煤粉鍋爐中推廣氣化小油槍、等離子點火等節油或無油點火穩燃節能技術。

推廣電力設備改造提效技術。對現有200MW、300MW機組,進行提高低壓缸通流部分效率的改造及各類機組低效輔機的技術改造。

發展、推廣電網經濟運行技術。優化電網運行方式,優化變壓器分接頭配置,加強無功補償及其調節能力,提高用電功率因數。建立、完善電網運行信息系統,推廣電網線損診斷與管理技術。加強對電網線損率的分級管理和分區分壓分線(臺站)的統計分析、理論計算和小指標考核等線損管理制度。發展推行電網用電側監測管理技術。

發展、推廣大型企業用電管理信息系統、車間工藝自動控制節能技術。

2.2.3鋼鐵生產節能技術

發展鋼鐵露天礦山陡幫和高臺階開采以及地下礦開采結構參數優化技術。

焦化發展型煤煉焦技術,干熄焦大型化技術。

發展超高鐵、低硅、低燃耗、高還原度燒結技術,推廣低碳厚料層、混合料預熱、熱風點火和小球燒結等節能技術。

發展高爐大型化、優化爐料結構和長壽命技術,實現精料、高風溫、高噴煤比、低硅冶煉,建立高爐操作專家系統。研發熔融還原、直接還原煉鐵新技術。

發展煉鋼節能技術。轉爐向大型化發展,逐步實現負能煉鋼;電爐煉鋼采用水冷爐壁—泡沫渣埋弧熔煉及高電壓、低電流供電熔煉技術;推廣廢鋼預熱技術;開發超高功率直流電弧爐和雙殼電弧爐等節電產品。

推廣高效連鑄、薄板坯連鑄連軋和近終型連鑄技術。

發展蓄熱式加熱爐技術,連鑄坯熱裝熱送、直送技術,汽化冷卻技術等。

2.2.4有色金屬生產節能技術

發展有色金屬礦露天開采和地下礦采場大型化技術、大型開采設備,實現浮選和多碎少磨設備大型化。

發展中低品位鋁土礦選礦脫硅技術和高效短流程生產工藝;發展氧化鋁生產間接加熱、強化熔出工藝技術;拜耳法管道化熔出技術。燒結法熟料燒成工藝過程發展窯外烘干預熱、智能集中控制技術;發展氫氧化鋁焙燒工藝過程流態化閃速焙燒及循環流化床焙燒技術;高效能降膜蒸發、閃速蒸發、多效蒸發、板式蒸發等工藝技術。

發展300kA以上大型預焙槽電解鋁生產技術、電解鋁液直接生產鋁及鋁合金錠等綜合節能工藝。

發展大型硫化銅精礦冶煉,推廣富氧強化熔池熔煉及高濃度富氧、常溫鼓風閃速熔煉工藝;發展銅冶煉連續吹煉和濕法煉銅技術;推廣不銹鋼陰極母板。

推廣鉛冶煉過程氧氣底吹熔煉、渣還原煉鉛(SKS法)及氧氣頂吹熔池煉鉛新工藝,改進現有燒結—鼓風爐工藝;研究開發直接煉鉛工藝。

推廣鋅冶煉過程富氧強化焙燒及加壓浸出工藝技術。發展鎳硫化礦冶煉過程的富氧強化閃速熔煉或熔池熔煉工藝。

發展錫冶煉奧斯麥特富氧頂吹熔煉工藝。

利用焦爐煤氣發展硅熱法煉鎂技術,開發新型鎂還原工藝及大型無隔板鎂電解槽。

發展銅鋁鉛鋅冶煉過程檢測和優化控制技術及短流程、連續化加工成型技術。

發展鈦渣冶煉密閉電爐的連續加料、大型沸騰氯化爐生產四氯化鈦和還原—蒸餾聯合法制取海綿鈦新工藝。

2.2.5黃金生產節能技術

發展高效選礦、多碎少磨和優化冶煉工藝技術:高硫、高砷金精礦采用生物氧化技術;載金炭采用高壓無氰和常溫常壓解吸工藝;高品位貴液采用一步電積工藝;金泥采用濕法冶金工藝。

2.2.6建筑材料生產節能技術

發展、推廣水泥大型窯外分解新型干法窯生產技術,以及相應的生產技術裝備,如高效粉磨、高效冷卻、優質耐火材料生產技術等。開發利用可替代原、燃料的廢棄物再生能源。

發展大型(日熔化量500t以上)優質浮法線生產技術。全面提高洛陽浮法玻璃成套工藝技術與裝備,研發推廣浮法玻璃窯爐的輔助熔化與全氧、富氧燃燒技術。

發展建筑陶瓷、衛生陶瓷輥道窯技術,大噸位壓磚機技術,高速燒嘴燃燒技術,窯爐大型化及窯體耐火保溫輕質化,節能煅燒技術等。

發展煤矸石、粉煤灰、頁巖等生產空心磚和裝飾磚的新技術和新設備;發展各種具有輕質、保溫、節能、隔音、裝飾功能的建筑砌塊制品;研究開發工業化生產的成套技術等。

發展年產3萬t以上無堿玻璃纖維池窯拉絲生產技術和產品深加工技術。

推廣和提高石灰連續生產節能立窯技術。

2.2.7化工生產節能技術

發展大型化、集成化、自動化生產合成氨技術;發展以天然氣為原料的生產合成氨技術,主要有天然氣自熱轉化技術(ATR)、非催化部分氧化技術(POX),以及相應合成氨凈化技術;發展用煙煤、褐煤等粉煤和水煤漿制合成氨技術;采用能量系統優化技術對傳統工藝進行改造。

發展低能耗合成氨工藝。改進和發展工藝單元技術,包括溫和轉化、燃氣輪機、低熱耗的脫碳與變換、深冷凈化、效率更高的合成回路和低壓合成技術。

發展離子膜燒堿技術和氧陰極技術;推廣節能型離心膜電解槽;推廣燒堿改隔膜+金屬擴張陽極+活陰極隔膜法電解技術;推廣高效節能型蒸發技術和裝置。

純堿生產推廣氨堿法真空蒸餾或干法加灰蒸餾技術,蒸餾廢液閃發技術;聯堿法高效淡液蒸餾塔技術,新型變換氣直接制堿技術,高效換熱設備節能技術,氯化銨結晶工序節能技術。

發展大型密閉電石爐和大型黃磷電爐,采用機械自動上料和配料密閉系統技術。

2.2.8石油天然氣開采節能技術

陸上石油天然氣開采發展高效采油工藝設備,推廣抽油機系統優化匹配和優化運行技術;優化簡化油氣集輸工藝流程,建設多功能合一、高效節能的油田聯合處理站;推廣整裝稀油油田油氣集輸密閉流程;發展優化注水工藝技術,高含水期完善注采井網、擴大注水波及體積,特高含水期采取細分層注水、細分層堵水、調剖等措施;推廣高效注水泵機組和注水系統優化運行技術;推廣稠油熱采提高注汽鍋爐能效技術、高壓高溫輸汽管道保溫技術、稠油污水深度處理回用鍋爐技術;管道輸油推廣密閉輸送工藝和高效加熱爐、輸油泵及配套的電動機;推廣降凝降粘減阻技術,不加熱輸送技術和智能清管技術;管道輸氣推廣管道內壁涂層技術、不停輸清管技術;石油鉆井推廣水平井、欠平衡鉆井、分支井等鉆井技術,推廣鉆井提速技術和網電驅動鉆機;油井施工推廣“綠色作業”技術。

海洋石油天然氣開采推廣的油藏模擬軟件和油藏監測的四維地震技術;研究油氣田開發動態跟蹤技術;優化油田壽命期內的采油方式;推廣水驅、CO2驅、聚合物驅、微生物采油等新技術;合理利用地層壓力提高驅油效率和采收率;利用水平井、大斜度井、多底井等鉆完井技術;在油田高含水階段,推廣“穩油控水”新工藝。發展從油藏、井筒、油氣處理到外輸全過程的整體能耗優化工藝技術。充分考慮油田群或氣田群天然能量的平衡利用,確定聯合開發中心平臺的位置;充分利用氣井壓力輸送天然氣。采用水力旋流器、膜分離技術等高效含油污水處理設備;采用油氣集輸系統密閉流程工藝。

2.2.9石油化工生產節能技術

煉油常減壓蒸餾裝置,采用夾點技術優化換熱和預閃蒸等節能型流程;催化裂化裝置,推廣降低焦炭產率和減少裝置結焦技術;芳烴抽提工藝過程,推廣高效溶劑(四乙二醇醚、環丁砜等)技術;用氫裝置發展氫能優化技術;研究開發低能耗的過濾—吸附再生法;推廣應用抽提蒸餾工藝。

研究開發加氫裝置熱高分流程的優化技術;采用液力透平回收壓力能;開發、應用新型加氫催化劑、的反應器內構件和循環氫脫硫措施;推廣延遲焦化裝置大型化、雙面輻射加熱爐技術;推廣裝置間熱聯合技術。

推廣乙烯裝置裂解爐空氣預熱技術、乙烯在線燒焦技術,推廣乙烯裂解爐強化傳熱技術;開發加注結焦抑制劑,推廣低能耗分離技術。研發合成樹脂催化劑技術,完善聚丙烯裝置的丙烯原料精制系統。推廣合成橡膠吸收式熱泵技術。研發直接干燥技術。

2.2.10輕工生產節能技術

造紙化學制漿向深度脫木素蒸煮工藝、氧脫木素、無元素氯和全無氯漂白方向發展;采用高濃篩漿、高效精漿技術和設備;發展高得率制漿技術(如TMP、CTMP、APMP等)及中高濃漂白技術;造紙機采用新型脫水器材、寬區壓榨、全封閉式氣罩、熱泵、熱回收技術等;制漿、造紙工藝過程及管理系統計算機控制等技術。

日用玻璃推廣節能環保型窯爐,綜合采用新型優質耐火材料并合理匹配,強化窯體保溫,減少流液洞玻璃液回流,增加蓄熱室回收效率及合理應用窯坎、鼓泡、電助熔、深澄清池等技術,發展推廣純氧助燃、全氧燃燒和減壓澄清技術,提高窯爐熔化率和窯爐壽命;改善燃燒工藝條件,選用燃燒效率高、污染小的燃料,保持佳空氣系數,阻止三次空氣漏入;優選玻璃配方,推廣全國基本統一的日用玻璃化學成分組成及組成范圍,提高廢玻璃加入量的比例,改善工藝條件和生產過程控制,發展瓶罐玻璃輕量化技術。

日用陶瓷推廣節能型窯爐,采用新型優質耐火保溫材料,全保溫和優化窯爐結構及燃燒控制系統等技術;開發日用陶瓷工業窯爐技術支撐體系;推廣輕質耐火材料匣缽、窯具、窯車,采用清潔氣體燃料或液體燃料,實現明焰無匣燒成。

制糖業向大型化發展(日處理糖大于3000t),充分利用低熱值煮糖汁汽和熱能,提高糖廠蒸汽復用指數;采用降膜蒸發罐、強制循環煮糖罐、全自動分蜜機等設備,實現制糖生產熱能集中控制。

井礦鹽向生產裝置大型化(單套設備生產能力大于60萬t/n)發展;鼓勵發展液體鹽;推廣鹵水凈化新技術;改造現有高耗能設備;積極采用鹽硝聯產制鹽技術;提高自動化控制水平;產品綜合能耗達到行業規定指標。

2.2.11紡織工業生產節能技術

推廣自動化、高效化紡織工業工藝技術和裝備,縮短工藝流程,提高效率。棉紡行業推廣緊密紡、中高支轉杯紡紗工藝和高智能型寬幅無梭織機等新技術;染整行業推廣高效節水、節能型助劑和冷軋堆一步法、一浴法等新工藝,采用智能化高效短流程前處理機、高效節能的拉幅定型機等。采用多效多級蒸發設備與技術處理印染的堿液、化纖的酸液。

2.3生產過程余熱、余壓、余能利用技術

推廣生產過程余熱、余壓、余能的回收利用技術,遵循“梯級利用,高質高用”原則,優先把高品位余熱余能用于做功或發電,低溫余熱用于空調、采暖或生活用熱。

2.3.1發展工業窯爐余熱、余能利用技術

工業窯爐煙氣余熱可用于空氣、燃料及物料的預熱及爐外熱回收設施。

2.3.2發展鋼鐵生產過程余熱回收利用技術

推廣干法熄焦技術,開發推廣爐渣余熱回收利用技術,綜合利用焦爐煤氣和焦油做民用燃料或生產化工產品。

2.3.3推廣鋼鐵生產過程副產煤氣等余壓回收利用及發電技術

推廣高爐煤氣干式除塵壓差發電技術和轉爐煤氣、蒸汽回收技術,轉爐干法除塵技術。充分利用低熱值高爐煤氣和轉爐煤氣,發展燃氣蒸汽聯合發電技術,逐步實現鋼鐵生產工藝過程燃料無油化。

2.3.4發展有色金屬生產過程余熱和副產煤氣的回收利用技術

2.3.5發展、推廣大型干法水泥窯純低溫余熱發電技術,玻璃窯低溫余熱利用技術

2.3.6發展利用焦爐廢氣生產石灰工藝技術,提高石灰副產品回收綜合利用

2.3.7發展利用電石爐爐氣和炭黑、黃磷、合成氨、硫酸生產中產生的可燃氣體作燃料或原料技術

2.3.8發展推廣石油化工生產過程能量回收利用技術

推廣余熱、余汽發電、吸收式熱泵和制冷技術。催化重整(包括半再生和連續重整)過程推廣回收重整加熱爐煙氣余熱技術。發展油品儲運系統回收放散氣體和減少原油加工損失的技術。采用自動點火系統,提高火炬氣回收率。

2.3.9發展乙烯熱聯合技術,采用燃氣輪機—加熱爐(裂解爐)聯合供熱供電

2.3.10加強合成纖維原料丙烯腈回收系統的余熱回收利用

推廣PTA蒸汽透平技術;精制部分推廣能量回收技術;己內酰胺生產采用仿生催化氧化、環己酮氨肟化等技術。

2.3.11研發衛生陶瓷梭式窯余熱利用技術

重點解決“雙爐”系統梭式窯和梭式窯專用助燃空氣預熱換熱系統。

2.4高效節能設備

研發、推廣高效節能型工業通用設備和專用設備,主要包括工業鍋爐、工業窯爐、各種電動機、風機、泵、壓縮機、氣體分離設備、電力變壓器等。

2.4.1發展、推廣高效和清潔燃料工業鍋爐

發展、推廣新型高效工業鍋爐系列。

發展、推廣循環流化床工業鍋爐,采用與燃氣輪機或內燃機配套的余熱鍋爐。

推廣使用潔凈煤、型煤和生物質燃料等的鍋爐。

發展高效的燃燒裝置,推廣煤粉分級燃燒等潔凈燃燒方式;提高工業鍋爐自動控制裝置和燃燒監測手段;推廣低阻高效旋風除塵器。

2.4.2發展、推廣高效工業窯爐

發展新型隔熱保溫材料工業窯爐。新建工業窯爐應向連續化、大型化、自動化方向發展。

研發、推廣蓄熱式燃燒器自身預熱燒嘴系列、高速燒嘴系列、平焰燒嘴系列產品。開發組合燃燒單元,爐溫自動控制,空燃比控制,爐壓控制等系列產品。

發展大容量和高功率密度爐型感應熔煉爐。

2.4.3發展高效、強化換熱設備

發展高效、長壽、強化換熱設備,如各種管殼式強化換熱器,波紋管換熱器、板式換熱器、螺旋管式換熱器、新型高效噴流換熱器、流化床換熱器、碳化硅換熱器、陶瓷換熱器等高溫換熱器以及熱管等小溫差換熱器。

2.4.4發展、推廣高效機電設備

推廣S11型及低損耗變壓器、低能耗導線、金具等節能型配電設備及附件。

發展高能無功補償裝置。推廣可調節型低壓無功補償裝置、高壓能無功補償裝置(SVC、SVG等);改進電網供電質量的節電設備,如諧波防治裝置等。

發展、推廣高效率的泵類設備。通過完善泵的三元流場、二相流分析計算方法,改進加工工藝,使泵的能效達到83%~87%;開發使用與變頻器結合的可進行流量調節的恒流量、變揚程特水泵,替代水閥進行流量調節,并擴大系列型譜范圍,增加品種。

推廣節能型通用風機產品,通用風機的效率平均應達到80%~85%。開發新型礦用風機、風扇,電廠、工業鍋爐用高效節能風機,如三葉羅茨風機,三元流動葉輪的高效節能風機等;開發使用與變頻器結合,用于流量調節的恒流量、變揚程特風機。

發展、推廣變頻調速技術與裝置及內反饋斬波調速技術與裝置。開發電動機拖動用節能調速裝置、工藝調速能用交流調速裝置、特種調速用交流調速裝置、變頻電源及車船使用的直—交逆變電源、牽引調速專用裝置、綠色發電用異步電動機變頻調速裝置等。

研究、發展節能高效電動機。采用冷軋硅鋼片代替熱軋硅鋼片,生產動力用電動機和與變頻器集成的變頻電動機。研發、推廣銅轉子電機高起動轉矩永磁同步電機。

研發余熱、廢熱、太陽能空調、熱泵機組和冷熱電聯產裝置。

推廣逆變式焊接電源焊機,開發絕緣柵雙擊型晶體管(IGBT)逆變電源、自動、半自動焊接設備和二氧化碳(CO2)氣體保護焊機等。

研發電子音視頻節能節電產品,包括低待機能耗的CRT機、液晶等離子平板彩色電視機、DVD/VCD視盤機等家用電子音視頻產品和計算機顯示器、傳真機、復印機等信息通信產品。

2.5節能新技術

2.5.1研發、推廣高紅外、遠紅外、等離子、感應加熱等高效加熱新技術

2.5.2研發、推廣微波能高溫技術,如微波燒結、微波高溫合成工藝及相關設備

2.5.3研發、推廣膜技術在氣體分離、污水處理、電解等領域的應用

2.5.4研發新型煤粘結劑、助燃劑和工業型煤,發展煤粉成型技術

2.5.5研發中小型高效清潔煤燃燒技術及裝備

2.5.6研發機械、電子和信息技術相結合的機電一體化技術裝備

2.5.7研發微生物選礦、微生物化肥等微生物技術

2.5.8研發環保、高能效比制冷劑等技術,發展冰(水)蓄冷技術,研發動態蓄冰技術

2.5.9研發新型傳熱傳質技術以及納米技術、超導技術、超聲技術、磁化化技術、稀土技術在節能領域中的應用

2.5.10研發減磨與潤滑技術、新型密封技術、防腐蝕技術、清洗與除銹除垢技術、添加劑技術、催化助燃等高新技術

2.5.11研發高溫超導技術在大電流傳輸、電能儲存和高效電動機的應用

2.5.12研發天然氣水合物等新型能源開采技術

2.5.13發展、推廣電子技術、模糊控制技術在用電設備和家電產品中的應用

2.6節能新材料

2.6.1研發、推廣新型保溫、隔熱、高溫、密封材料

推廣新型優質保溫耐火材料。1250℃以下工業窯爐推廣高鋁纖維,硅酸鋁纖維耐火材料,1250~1400℃工業窯爐逐步推廣高溫氧化鋁耐火纖維材料。

推廣建筑用模塑聚苯乙烯、擠塑聚苯乙烯、聚氨脂、硬質酚醛泡沫、巖棉、玻璃棉、膨脹珍珠巖等保溫材料,推廣應用新型節能墻體材料和節能窗框、玻璃材料。研究開發相變儲能材料和薄膜型熱反射材料。開發優質巖棉材料。

推廣微孔泡沫聚氨酯隔熱材料、陶瓷電熱膜等。

研發新型高能熱力、供冷管網保溫材料。

推廣高溫優質耐火材料,如冶金、建材行業用高純鎂砂、鎂鉻質、鎂鋁質及不定型澆注耐火材料。

2.6.

脫硫的工藝種類

石灰石——石膏法脫硫工藝是世界上應用廣泛的一種脫硫技術,日本、德國、美國的火力發電廠采用的煙氣脫硫裝置約90%采用此工藝。

它的工作原理是:將石灰石粉加水制成漿液作為吸收劑泵入吸收塔與煙氣充分接觸混合,煙氣中的二氧化硫與漿液中的碳酸鈣以及從塔下部鼓入的空氣進行氧化反應生成硫酸鈣,硫酸鈣達到一定飽和度后,結晶形成二水石膏。經吸收塔排出的石膏漿液經濃縮、脫水,使其含水量小于10%,然后用輸送機送石膏貯倉堆放,脫硫后的煙氣經過除霧器除去霧滴,再經過換熱器加熱升溫后,由煙囪排入大氣。由于吸收塔內吸收劑漿液通過循環泵反復循環與煙氣接觸,吸收劑利用率很高,鈣硫比較低,脫硫效率可大于95%。

系統組成:

(1)石灰石儲運系統

(2)石灰石漿液制備及供給系統

(3)煙氣系統

(4)SO2吸收系統

(5)石膏脫水系統

(6)石膏儲運系統

(7)漿液排放系統

(8)工藝水系統

(9)壓縮空氣系統

(10)廢水處理系統

(11)氧化空氣系統

(12)電控制系統

技術特點:

⑴、吸收劑適用范圍廣:在FGD裝置中可采用各種吸收劑,包括石灰石、石灰、鎂石、廢蘇打溶液等;

⑵、燃料適用范圍廣:適用于燃燒煤、重油、奧里油,以及石油焦等燃料的鍋爐的尾氣處理;

⑶、燃料含硫變化范圍適應強:可以處理燃料含硫量高達8%的煙氣;

⑷、機組負荷變化適應強:可以滿足機組在15~負荷變化范圍內的穩定運行;

⑸、脫硫效率高:一般大于95%,高達到98%;

⑹、專利托盤技術:有效降低液/氣比,有利于塔內氣流均布,節省物耗及能耗,方便吸收塔內件檢修;

⑺、吸收劑利用率高:鈣硫比低1.02~1.03;

⑻、副產品純度高:可生產純度達95%以上的商品級石膏;

⑼、燃煤鍋爐煙氣的除塵效率高:達到80%~90%;

⑽、交叉噴淋管布置技術:有利于降低吸收塔高度。

的適用范圍:

⑴、200MW及以上的中大型新建或改造機組;

⑵、燃煤含硫量在0.5~5%及以上;

⑶、要求的脫硫效率在95%以上;

⑷、石灰石較豐富且石膏綜合利用較廣泛的地區噴霧干燥法脫硫工藝以石灰為脫硫吸收劑,石灰經消化并加水制成消石灰,消石灰由泵打入位于吸收塔內的霧化裝置,在吸收塔內,被霧化成細小液滴的吸收劑與煙氣混合接觸,與煙氣中的SO2發生化學反應生成CaSO3,煙氣中的SO2被脫除。與此同時,吸收劑帶入的水分迅速被蒸發而干燥,煙氣溫度隨之降低。脫硫反應產物及未被利用的吸收劑以干燥的顆粒物形式隨煙氣帶出吸收塔,進入除塵器被收集下來。脫硫后的煙氣經除塵器除塵后排放。為了提高脫硫吸收劑的利用率,一般將部分除塵器收集物加入制漿系統進行循環利用。該工藝有兩種不同的霧化形式可供選擇,一種為旋轉噴霧輪霧化,另一種為氣液兩相流。

噴霧干燥法脫硫工藝具有技術成熟、工藝流程較為簡單、系統可靠高等特點,脫硫率可達到85%以上。該工藝在美國及西歐一些有一定應用范圍(8%)。脫硫灰渣可用作制磚、筑路,但多為拋棄灰場或回填廢舊礦坑。磷銨肥法煙氣脫硫技術屬于回收法,以其副產品為磷銨而命名。該工藝過程主要由吸附(活炭脫硫制酸)、萃取(稀硫酸分解磷礦萃取磷酸)、中和(磷銨中和液制備)、吸收(磷銨液脫硫制肥)、氧化(亞硫酸銨氧化)、濃縮干燥(固體肥料制備)等單元組成。它分為兩個系統:

煙氣脫硫系統——煙氣經高效除塵器后使含塵量小于200mg/Nm3,用風機將煙壓升高到7000Pa,先經文氏管噴水降溫調濕,然后進入四塔并列的活炭脫硫塔組(其中一只塔周期切換再生),控制一級脫硫率大于或等于70%,并制得30%左右濃度的硫酸,一級脫硫后的煙氣進入二級脫硫塔用磷銨漿液洗滌脫硫,凈化后的煙氣經分離霧沫后排放。

肥料制備系統——在常規單槽多漿萃取槽中,同一級脫硫制得的稀硫酸分解磷礦粉(P2O5含量大于26%),過濾后獲得稀磷酸(其濃度大于10%),加氨中和后制得磷氨,作為二級脫硫劑,二級脫硫后的料漿經濃縮干燥制成磷銨復合肥料。爐內噴鈣加尾部煙氣增濕活化脫硫工藝是在爐內噴鈣脫硫工藝的基礎上在鍋爐尾部增設了增濕段,以提高脫硫效率。該工藝多以石灰石粉為吸收劑,石灰石粉由氣力噴入爐膛850~1150℃溫度區,石灰石受熱分解為氧化鈣和二氧化碳,氧化鈣與煙氣中的二氧化硫反應生成亞硫酸鈣。由于反應在氣固兩相之間進行,受到傳質過程的影響,反應速度較慢,吸收劑利用率較低。在尾部增濕活化反應器內,增濕水以霧狀噴入,與未反應的氧化鈣接觸生成氫氧化鈣進而與煙氣中的二氧化硫反應。當鈣硫比控制在2.0~2.5時,系統脫硫率可達到65~80%。由于增濕水的加入使煙氣溫度下降,一般控制出口煙氣溫度高于露點溫度10~15℃,增濕水由于煙溫加熱被迅速蒸發,未反應的吸收劑、反應產物呈干燥態隨煙氣排出,被除塵器收集下來。

該脫硫工藝在芬蘭、美國、加拿大、法國等得到應用,采用這一脫硫技術的大單機容量已達30萬千瓦。煙氣循環流化床脫硫工藝由吸收劑制備、吸收塔、脫硫灰再循環、除塵器及控制系統等部分組成。該工藝一般采用干態的消石灰粉作為吸收劑,也可采用其它對二氧化硫有吸收反應能力的干粉或漿液作為吸收劑。

由鍋爐排出的未經處理的煙氣從吸收塔(即流化床)底部進入。吸收塔底部為一個文丘里裝置,煙氣流經文丘里管后速度加快,并在此與很細的吸收劑粉末互相混合,顆粒之間、氣體與顆粒之間劇烈摩擦,形成流化床,在噴入均勻水霧降低煙溫的條件下,吸收劑與煙氣中的二氧化硫反應生成CaSO3和CaSO4。脫硫后攜帶大量固體顆粒的煙氣從吸收塔頂部排出,進入再循環除塵器,被分離出來的顆粒經中間灰倉返回吸收塔,由于固體顆粒反復循環達百次之多,故吸收劑利用率較高。

此工藝所產生的副產物呈干粉狀,其化學成分與噴霧干燥法脫硫工藝類似,主要由飛灰、CaSO3、CaSO4和未反應完的吸收劑Ca(OH)2等組成,適合作廢礦井回填、道路基礎等。

典型的煙氣循環流化床脫硫工藝,當燃煤含硫量為2%左右,鈣硫比不大于1.3時,脫硫率可達90%以上,排煙溫度約70℃。此工藝在國外目前應用在10~20萬千瓦等級機組。由于其占地面積少,投資較省,尤其適合于老機組煙氣脫硫。燃燒前脫硫就是在煤燃燒前把煤中的硫分脫除掉,燃燒前脫硫技術主要有物理洗選煤法、化學洗選煤法、添加固硫劑、煤的氣化和液化、水煤漿技術等。洗選煤是采用物理、化學或生物方式對鍋爐使用的原煤進行清洗,將煤中的硫部分除掉,使煤得以凈化并生產出不同質量、規格的產品。微生物脫硫技術從本質上講也是一種化學法,它是把煤粉懸浮在含細菌的氣泡液中,細菌產生的酶能促進硫氧化成硫酸鹽,從而達到脫硫的目的;微生物脫硫技術目前常用的脫硫細菌有:屬硫桿菌的氧化亞鐵硫桿菌、氧化硫桿菌、古細菌、熱硫化葉菌等。添加固硫劑是指在煤中添加具有固硫作用的物質,并將其制成各種規格的型煤,在燃燒過程中,煤中的含硫化合物與固硫劑反應生成硫酸鹽等物質而留在渣中,不會形成SO2。煤的氣化,是指用水蒸汽、氧氣或空氣作氧化劑,在高溫下與煤發生化學反應,生成H2、CO、CH4等可燃混合氣體(稱作煤氣)的過程。煤炭液化是將煤轉化為清潔的液體燃料(汽油、柴油、航空煤油等)或化工原料的一種的潔凈煤技術。水煤漿(Coal Water Mixture,簡稱CWM)是將灰份小于10%,硫份小于0.5%、揮發份高的原料煤,研磨成250~300μm的細煤粉,按65%~70%的煤、30%~35%的水和約1%的添加劑的比例配制而成,水煤漿可以像燃料油一樣運輸、儲存和燃燒,燃燒時水煤漿從噴嘴高速噴出,霧化成50~70μm的霧滴,在預熱到600~700℃的爐膛內迅速蒸發,并拌有微爆,煤中揮發分析出而著火,其著火溫度比干煤粉還低。

燃燒前脫硫技術中物理洗選煤技術已成熟,應用廣泛、經濟,但只能脫無機硫;生物、化學法脫硫不僅能脫無機硫,也能脫除有機硫,但生產成本昂貴,距工業應用尚有較大距離;煤的氣化和液化還有待于進一步研究完善;微生物脫硫技術正在開發;水煤漿是一種新型低污染代油燃料,它既保持了煤炭原有的物理特,又具有石油一樣的流動和穩定,被稱為液態煤炭產品,市場潛力巨大,目前已具備商業化條件。

煤的燃燒前的脫硫技術盡管還存在著種種問題,但其優點是能同時除去灰分,減輕運輸量,減輕鍋爐的沾污和磨損,減少電廠灰渣處理量,還可回收部分硫資源。爐內脫硫是在燃燒過程中,向爐內加入固硫劑如CaCO3等,使煤中硫分轉化成硫酸鹽,隨爐渣排除。其基本原理是:

CaCO3==高溫==CaO+CO2↑

CaO+SO2====CaSO3

2CaSO3+O2====2CaSO4

⑴LIMB爐內噴鈣技術

早在本世紀60年代末70年代初,爐內噴固硫劑脫硫技術的研究工作已開展,但由于脫硫效率低于10%~30%,既不能與濕法FGD相比,也難以滿足高達90%的脫除率要求。一度被冷落。但在1981年美國環保局EPA研究了爐內噴鈣多段燃燒降低氮氧化物的脫硫技術,簡稱LIMB,并取得了一些經驗。Ca/S在2以上時,用石灰石或消石灰作吸收劑,脫硫率分別可達40%和60%。對燃用中、低含硫量的煤的脫硫來說,只要能滿足環保要求,不一定非要求用投資費用很高的煙氣脫硫技術。爐內噴鈣脫硫工藝簡單,投資費用低,特別適用于老廠的改造。

⑵LIFAC煙氣脫硫工藝

LIFAC工藝即在燃煤鍋爐內適當溫度區噴射石灰石粉,并在鍋爐空氣預熱器后增設活化反應器,用以脫除煙氣中的SO2。芬蘭Tampella和ⅣO公司開發的這種脫硫工藝,于1986年首先投入商業運行。LIFAC工藝的脫硫效率一般為60%~85%。

加拿大的燃煤電廠Shand電站采用LIFAC煙氣脫硫工藝,8個月的運行結果表明,其脫硫工藝能良好,脫硫率和設備可用率都達到了一些成熟的SO2控制技術相當的水平。中國下關電廠引進LIFAC脫硫工藝,其工藝投資少、占地面積小、沒有廢水排放,有利于老電廠改造。簡介

(Flue gas desulfurization,簡稱FGD)

燃煤的煙氣脫硫技術是當前應用廣、效率高的脫硫技術。對燃煤電廠而言,在今后一個相當長的時期內,FGD將是控制SO2排放的主要方法。目前國內外火電廠煙氣脫硫技術的主要發展趨勢為:脫硫效率高、裝機容量大、技術水平、投資省、占地少、運行費用低、自動化程度高、可靠好等。

干式脫硫

該工藝用于電廠煙氣脫硫始于80年代初,與常規的濕式洗滌工藝相比有以下優點:投資費用較低;脫硫產物呈干態,并和飛灰相混;無需裝設除霧器及再熱器;設備不易腐蝕,不易發生結垢及堵塞。其缺點是:吸收劑的利用率低于濕式煙氣脫硫工藝;用于高硫煤時經濟差;飛灰與脫硫產物相混可能影響綜合利用;對干燥過程控制要求很高。

⑴噴霧干式煙氣脫硫工藝:噴霧干式煙氣脫硫(簡稱干法FGD),先由美國JOY公司和丹麥Niro Atomier公司共同開發的脫硫工藝,70年代中期得到發展,并在電力工業迅速推廣應用。該工藝用霧化的石灰漿液在噴霧干燥塔中與煙氣接觸,石灰漿液與SO2反應后生成一種干燥的固體反應物,連同飛灰一起被除塵器收集。中國曾在四川省白馬電廠進行了旋轉噴霧干法煙氣脫硫的中間試驗,取得了一些經驗,為在200~300MW機組上采用旋轉噴霧干法煙氣脫硫優化參數的設計提供了依據。

⑵粉煤灰干式煙氣脫硫技術:日本從1985年起,研究利用粉煤灰作為脫硫劑的干式煙氣脫硫技術,到1988年底完成工業實用化試驗,1991年初投運了首臺粉煤灰干式脫硫設備,處理煙氣量644000Nm3/h。其特點:脫硫率高達60%以上,能穩定,達到了一般濕式法脫硫能水平;脫硫劑成本低;用水量少,無需排水處理和排煙再加熱,設備總費用比濕式法脫硫低1/4;煤灰脫硫劑可以復用;沒有漿料,維護容易,設備系統簡單可靠。

濕法工藝

世界各國的濕法煙氣脫硫工藝流程、形式和機理大同小異,主要是使用石灰石(CaCO3)、石灰(CaO)或碳酸鈉(Na2CO3)等漿液作洗滌劑,在反應塔中對煙氣進行洗滌,從而除去煙氣中的SO2。這種工藝已有50年的歷史,經過不斷地改進和完善后,技術比較成熟,而且具有脫硫效率高(90%~98%),機組容量大,煤種適應強,運行費用較低和副產品易回收等優點。據美國環保局(EPA)的統計資料,全美火電廠采用濕式脫硫裝置中,濕式石灰法占39.6%,石灰石法占47.4%,兩法共占87%;雙堿法占4.1%,碳酸鈉法占3.1%。世界各國(如德國、日本等),在大型火電廠中,90%以上采用濕式石灰/石灰石-石膏法煙氣脫硫工藝流程。

石灰或石灰石法主要的化學反應機理為:

石灰法:SO2+CaO+1/2H2O→CaSO3·1/2H2O

石灰石法:SO2+CaCO3+1/2H2O→CaSO3·1/2H2O+CO2

其主要優點是能廣泛地進行商品化開發,且其吸收劑的資源豐富,成本低廉,廢渣既可拋棄,也可作為商品石膏回收。目前,石灰/石灰石法是世界上應用多的一種FGD工藝,對高硫煤,脫硫率可在90%以上,對低硫煤,脫硫率可在95%以上。

傳統的石灰/石灰石工藝有其潛在的缺陷,主要表現為

本文標簽:
在線客服
聯系方式

熱線電話

19962393205

上班時間

周一到周六

公司電話

19962393205

二維碼